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Nonequilibrium Dynamics of a 
Diffusion-Limited Reaction Driven by a 
Cluster-Memory Mechanism 
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The diffusion-limited reaction A + A ~ A + B is studied in general dimension. 
The asymptotic decay of the system is found to depend nontrivially upon the 
initial concentration of A particles for certain ranges of the diffusion constant, 
backward reaction rate, and total concentration of particles. This non- 
equilibrium behavior is due to the formation of clusters centered about the 
initial A particles. A perturbative analysis in d = 1 shows that the transition to 
the nonequilibrium dynamics is sharp and is quite similar to another previously 
studied reaction A + A  ~ A. For d >  i, a scaling argument is presented which 
describes the dependence of the asymptotic decay on the initial concentration of 
A particles and the equilibrium concentration for large backward reaction rates. 
Monte Carlo data are shown which confirm the analytic work in d =  1, 2, and 3. 

KEY WORDS:  Nonequilibrium dynamics; diffusion-limited reactions; 
reaction kinetics; clusters. 

1. I N T R O D U C T I O N  

When a chemical system is close to equilibrium, one generally expects 
the time scales involved to be independent of the initial conditions. This 
is especially the case if the system evolves from a state in which the 
constituents are uncorrelated. Typically, such a system will quickly "forget" 
its initial configuration and the long-time decay modes will be the same 
as those in a system homogeneously perturbed from its equilibrium state 
(see, e.g., ref. 1). 

There are, however, certain simple reactive systems in which this rule 
does not hold. These are so-called diffusion-limited systems, (2 5) charac- 
terized by time scales dominated by diffusive transport of the constituents, 
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rather than the reaction time for particles in close proximit~r Some of these 
systems can remember their initial configuration as they approach 
infinitesimally close to equilibrium. This inherently nonequilibrium 
behavior is due to the potential of the system to develop interesting spatial 
features which govern the dynamics. 

One such reactive system is the reversible coagulation model 
A + A ~ A. In a recent paper, Burschka et al. (6) considered the case where 
the reaction time in the forward direction is neglected, i.e., the model is 
purely diffusion-limited. They investigated the evolution of the system from 
an initial configuration characterized solely by the initial concentration of 
particles (Co). With these restrictions, they were able to obtain an exact 
solution of the model in one dimension. Quite remarkably, they also dis- 
covered a "phase transition" in the dynamics, at which the long-time decay 
mode suddenly changes its dependence upon co. Above a certain value of 
initial concentration, the decay to equilibrium has the usual exponential 
form e -~'t, where 2 is a constant with respect to c o. Below this value the 
decay has the same form, but 2 depends nontrivially upon Co. 

The anomalous dependence of the long-time decay of the system 
A + A ~ A upon Co is due to the development of distinct regions having a 
relatively high density of A particles (i.e., clusters). When c o is much lower 
than the equilibrium concentration Ceq, the particles in the system at t = 0 
become centers for these growing clusters as t increases. The analytic solu- 
tion interestingly shows that the formation of these clusters governs the 
dynamics asymptotically and that there is a well-defined value of co at 
which the transition to this new dynamics occurs. However, if Co is too 
close to Ceq, only a small number of A particles per unit volume can be 
added before the system reaches equilibrium. There is then almost no 
chance that clusters will be formed. 

It is natural to ask if the cluster-memory mechanism persists in dimen- 
sions other than d =  1. At first glance it would appear so, but upon closer 
examination one finds that this is not necessarily the case. If diffusion is 
neglected so that the only process taking place is the addition of new par- 
ticles into the system via the backward reaction, the problem simplifies to 
one studied some 50 years ago. This is the so-called "rust spot" problem (7'8~ 
where clusters form by spreading from centers randomly placed in the 
system at t = 0. The probability that any point remains uncovered by the 
spreading rust decays as e x p ( - a t a ) .  In d =  1 this is in agreement with 
the analytic result for A+A,--~A. However, for d >  1, the decay due to 
spreading of clusters is functionally different from the exponential decay 
one always expects asymptotically when diffusion is present. This would 
suggest that the long-time decay of the system is not governed by the 
clusters when d > 1. 
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Nevertheless, some other diffusion-limited systems may preserve the 
cluster-memory mechanism in higher dimensions as indeed the reaction 
studied in this paper appears to do. The new model, A + A ~ A + B, is 
similar enough to A + A ~ A that the same analytic techniques developed 
by Burshka et a/. (6) may be used to solve it. The analysis then shows that 
an almost identical phase transition occurs in the dynamics of both models 
for d = l .  

In higher dimensions, however, A + A ~ A + B  appears to be 
strikingly different. Monte Carlo simulations of the reaction in d =  2 and 
d =  3 demonstrate the existence of the cluster-memory mechanism for a 
large range of initial concentrations. Furthermore, a scaling argument 
based on a hypothetical structure for the clusters near equilibrium gives the 
correct scaling as found from the Monte Carlo data. 

2. D E S C R I P T I O N  OF THE M O D E L  

The model reaction studied in this paper is A + A ~ A + B, where the 
forward reaction A + A ~ A + B  is diffusion-limited but the backward 
reaction A + A ~ A + B is reaction-limited. Physically, this means that the 
B particles are much more mobile than the A particles and so are always 
distributed randomly throughout the system. The model is defined on a 
d-dimensional hypercubic lattice where each lattice site is either occupied 
by a single A particle or empty: multiple occupation by A particles is not 
allowed. The B particles are also present on the lattice but because of their 
high mobility it is only necessary to consider the number of these rather 
than their specific locations. In effect, this implies that more than one B can 
occupy a given lattice site even if an A particle is also present; which is 
entirely consistent with the nature of the backward reaction. 

The particles may undergo the following processes: 

1. Diffusion: An A particle may hop away with a rate D/(Ax)2; 
it then arrives at a randomly selected nearest neighbor. Here, D is the 

diffusion constant with units of [L ]2 / [T ] .  

2. Forward Reaction: If an A particle hops via the diffusion process 
onto a lattice site already occupied by another A particle, the forward 
reaction immediately occurs, so that only one A particle is left at that site 
and a B particle is produced. 

3. Backward Reaction: An A particle at a given site may react with 
a B particle to produce a new A particle at any one of the nearest-neighbor 
sites with uniform probability. If another A particle already resides at the 
chosen site, the forward reaction at that site occurs immediately. 
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The rate at which the backward reaction occurs is 7cB(t)/(Ax) 2-a, 
where cB is the concentration of B particles and 7 is the backward reaction 
constant. The units of 7 are [L]Z/[-T] and have been chosen so that the 
model has a valid continuum limit while ~ remains finite. Physically, one 
can understand this choice of units by noting how the backward and 
forward reactions balance as one approaches the continuum limit. In d = 1, 
the backward reaction rate must diverge because otherwise the diffusive 
hopping rate, which also diverges, will always consume the new A particles 
as soon as they are produced. In contrast, for d > 2, the diffusive hopping 
rate does not diverge fast enough to compensate for the production of new 
A particles, so that the backward reaction rate must vanish with the 
appropriate power of Ax. 

At equilibrium, the system ~vill be in a state of maximal entropy where 
both the A and the B particles are distributed randomly. The equilibrium 
concentration of A particles CA can be calculated in d dimensions by 
solving for the stationary occupation probability at an arbitrary lattice 
site s. Denoting the occupation probability by p(t), we write the rate of 
change of p as 

dp D (1 - p ) p  D 
dt (Ax) 2 - ~ - - ~ p +  y%(Ax) a-2 ( 1 - p ) p  (1) 

Although Eq. (1) describes a homogeneous rather than a diffusion-limited 
decay, the equilibrium concentration is nevertheless the same. 

The first term on the right-hand side is due to particles hopping in 
from neighboring sites. The second term comes from A particles hopping 
out of s, while the third term comes from the backward reaction occurring 
at neighboring sites with the added constraint that the newly created A 
particle occupies s. The concentration of B particles cB in the third term 
may be replaced by (q - CA)  , where q = CA + CB is the total concentration of 
particles. 

The equilibrium value of p, P e q ,  c a n  be found by setting dp/dt to zero. 
The equilibrium concentration C~q = Peq/(AX) d is then implicitly given by 

7(q - C e q )  (2) 
%q = D + 7(q - -  Ceq)(zJX) d 

In the limit Ax ~ O, one obtains the continuum result 

q7 
Ceq ~ -  ( 3 )  

7 + D  
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whereas the limit Ax ~ 1 leads to the lattice value 

(D/y + 1 + q) [(D/7 + 1 + q)2_ 4q] ~/2 
Ceq ~ 2 2 
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(4) 

3. ANALYTIC  ANALYSIS  IN d = l  

The model can be solved perturbatively near equilibrium, in d =  1, by 
using the formalism developed by ben-Avraham, Burshka, and Doering ~6'9) 
for the diffusion-limited reaction A + A ~ A. The reader is referred to the 
above authors for a more detailed account. The model is initially defined 
on a lattice and then one proceeds to take the continuum limit. 

The basic idea is to recast the problem in terms of the empty interval 
probability En(t), defined to be the probability that n successive lattice 
spacings are devoid of A particles between the times t and t + At. The 
observation that E n - E , , + I  is the probability that n successive sites are 
empty, with an A particle occupying the (n + 1)th site (or, symmetrically, 
the zeroth site) leads to the following expression for the forward rate of 
change of E~: 

dt /VR (Ax) ~(E~+I-2E~+E~_I) (5) 

The production of new A particles via the backward reaction will decrease 
E, at the rate 

dt ,.'/BR zJX q +  / --77-~ ) 
(6) 

In Eq. (6), cA has been put in the lattice form (1 -EI ) /Ax .  This follows 
from noting that E 1 is the probability that no A particles are present at an 
arbitrary lattice site. 

In the continuum limit, En(t)~ E(x, t) with x =n Ax. The boundary 
condition E(0, t) = l is implemented because the probability of finding an 
empty interval of length zero must always be unity. The rate equation then 
becomes 

c 3 E O 2 E ( c 3 E )  ~E 
o t = D ~ x  2+7  q + ~ x  o ~x (7) 

The above equation is closed, so that, in principle, one can solve for E(x, t) 
and from it calculate relevant quantities such as the concentration. The 
information deriving from higher moments of the density distribution has 
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been folded into the empty interval probability E(x, t), so that the usual 
hierarchy of moment equations does not occur. Nevertheless, the scheme is 
limited in that complete information pertaining to the two-point correla- 
tion function (and higher correlations) is unavailable. To obtain the 
two-point information, for example, one would have to solve an equation 
for E(Xl, x2, Yl, Y2, l), the probability of the simultaneous existence at 
time t of two empty intervals (x2, xl) and (Y2, Yl) .~176 

The nonlinearity of Eq. (7) makes it difficult to solve exactly. 
However, the equilibrium empty interval probability Es(x) is easily 
obtained, and one can perturb around this function to analyze the 
long-time decay. Setting the left-hand side of Eq. (7) equal to zero and 
solving for E,(x) gives 

Es(x) = e-  [7q/(? + D)]x (8) 
This result represents the random distribution of A particles expected at 
equilibrium and the concentration is given by 7q/(7+D). Linearizing 
Eq. (7) about Es gives the following equation for the first perturbation 
of E, El: 

~E1 ~ 2 E l . ( _ [ d g s ~ E 1  (OE1)dEs 
8t =D--~x2+7 q ~ o]--~x + V \ Sx o dx (9) 

A modal analysis may now be performed by writing E~ in the form 

E 1 = ~ a;E;~(x) e -~t (10) 
2 

This procedure leads to an inhomogeneous ODE in x for each mode: 

Dd2Ex .jdE;~ (dE~. )dEs (11) 
+ ~ + 2 E ~ = - 7 \ d x  o dx 

where ~ = Dvq/(7 + D) and q is the total concentration of particles. 
Denoting 7(dEz/dx)Io by r (a number which must be solved for self- 

consistently) and making the substitution E~.(x)= [ e x p - ( U 2 D ) ]  F~(x) 
yields the equation 

- 

d2F;dx 2 [ (~ -~ ) - -D2- - - - ]F ,~ -D2exp ( - -~ )  (12) 

which is an inhomogeneous simple harmonic oscillator equation. It is 
then straightforward to solve for F~(x) using, for example, the method of 
Green's functions: 

Fi.h(X)=foae-b~'G2(xlx')dx'+f~ ae-b~'Gl(x]x')dx' (13) 

where a = ry/D 2 and b = ~/2D. 
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In the usual manner, the sign of the bracketed factor in Eq. (12) deter- 
mines whether the solution represents the overdamped or underdamped 
case. The final results are 

b 2ae-2bx 0:2 b 2 _ O~ 2 , (_~ )1/2; ~_~2 E~(x )  = A e  bx sinh(c~x) + ~ = - -  b 2 2 > 4/) 

ae 2b~ a cos(c~x) e bx 
= A e  bXsin(o~x)e->/D-~ b 2 + ~  2 b 2 + ~  2 , (14) 

~ =  b 2 -  �9 2<Y- 
' 4D 

Although these expressions are slightly more cumbersome than those 
obtained by ben-Avraham et aL, (9) it is evident that they possess the same 
basic structure. For  initial concentrations considerably lower than the 
equilibrium concentration, small modes are excited in the system. These 
modes are given by the hyperbolic sine term in the overdamped solution. 
The smallest mode, and hence the mode generating the longest decay in the 
asymptotics, is given implicitly by 

C o = b - ( b  2 - -  2/D) 1/2 ( 1 5 )  

Here, Co is the initial concentration of A particles. 
Solving for 2, one obtains 

"~ = Oco(Ceq - -  CO) (16) 

which is the same expression obtained for A + A ~ A. The modal analysis 
strongly suggests that the two models behave in the same manner in d =  1. 
However, because one cannot solve Eq. (7) exactly, it is not possible to 
prove the existence of the dynamical phase transition for A + A ~ A + B as 
in the case of A + A +-+ A. Nevertheless, the similar structure of the two 
models near equilibrium, together with the Monte Carlo data discussed in 
the next section, strongly indicates that the phase transition exists in 
A + A * - + A + B .  

4. SCALING A R G U M E N T  FOR d > l  

One of the most interesting questions concerns the existence of the 
dynamic phase transition in higher dimensions. Unfortunately, there is no 
known analytical formalism for the calculation of relevant quantities in 
the model A + A * - + A + B  for d > l .  Nonetheless, the model is a good 
candidate for a reaction having a memory mechanism based on the forma- 
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tion of clusters. This is particularly so in the large 7/D limit, where discrete 
clusters form rapidly, seeded by the initial A particles. The new A particles 
are added to the clusters via the backward reaction much more quickly 
than the diffusion processes can dissipate the clusters. Consequently, one 
expects to see well-defined clusters even in the late-stage growth. Whether 
or not the cluster structure influences the system as t increases without 
bound is not clear from these qualitative considerations. 

If the clusters do indeed drive the long-term behavior of the system, 
one can develop a phenomenological scaling argument, the predictions of 
which can be compared with Monte Carlo data. The argument is based on 
the following assumptions concerning the structure of the clusters near 
equilibrium: 

1. The interior each cluster is homogeneous and in a state of quasi- 
equilibrium. 

2. Each cluster has a well-defined surface having a width AR of the 
same order as the typical distance between particles in the interior. 

Under the above assumptions, the growth of clusters will be 
dominated by the addition of A particles to their peripheries. This process 
slowly depletes the number of particles in their interiors. The quasi- 
equilibrium condition implies that one can define an internal concentration 
ci(t) for the interior of the clusters. This internal concentration will be 
somewhat higher than the equilibrium value Ceq , whereas the entire system 
will have a concentration ca(t ) slightly less than Ceq. In such a scenario, the 
slow decay of ci is given by the equation 

AR 
ci = --'~(q - CA) ci (17) 

The above equation is the standard rate equation for the backward 
reaction applied to the homogeneous distribution of particles assumed to 
make up the clusters. The backward reaction rate is multiplied by an extra 
factor AR/R representing the probability that a B particle reacts with an 
A particle on the outer edge of the clusters. 

The radius R is obtained through noting from dimensional analysis 
that the number of particles in a typical cluster is ca~co. The volume of the 
cluster must be the number of particles multiplied by the volume per 
particle c 71: 

Rd = CA (18) 
CoCi 
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The thickness of the outer edge of the typical cluster A R  must be of the 
order of c~ TM. The result is then the equation 

~, = -7(q - CA) C]/aC~/aC A lid (19) 

The quasiequilibrium assumption also allows one to write c i in terms 
of CA in the following manner. For short time intervals, ci is nearly 
constant. In contrast to the slow time scales of Eq. (19), the forward and 
backward reactions almost balance for the short time scales: 

Oi~O~7(q--Cg) c i - -  D c  2 (20) 

Defining CA = Ceq- 6C and solving Eq. (20) gives 

7 (q _ Ceq _.1._ 6C) ( 2 1 )  Ci ~ -" ~ 

Substituting for c A and ci into Eq. (19) and expanding in powers of 
C, = ( 6 C ) / C e q  yields the result 

- -1 /d  l 'd  V1 + 2Ceq ] ~ (22) g = - D c e q  Co / L~ l ( q - c e q )  

Here, terms of order higher than ~ have been neglected. Constant terms 
have also been dropped, because physically they must be zero so that the 
system will decay to equilibrium. 

When 7/D is large, q--Ceq is much smaller than Ceq. The first term 
in the brackets on the right-hand side of Eq. (22) can therefore be 
neglected. The solution to Eq. (22) is then e = e -;~', where 

2 - 2/a ,,1 - 3/a,~l/a (23) - 2(DC,q ) ~,q ~0 

The factor in parentheses is the natural time step in d dimensions. 
Measured in these natural time steps, Eq. (23) predicts that the long-time 
decay mode scales with c o by the power l i d  and with C~q by the power 
1 - 3 / d .  

5. M O N T E  C A R L O  R E S U L T S  

The analytic results of the two previous sections have been checked 
directly by comparing them to Monte Carlo simulations. The system used 
in the simulations consists of a d-dimensional square lattice where A par- 
ticles are allowed to hop to their nearest-neighbor sites with a uniform 
probability. In the event that an A particle hops onto a site where another 
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A particle resides, one of the A particles remains at the site and the number 
of B particles is incremented by one. The hopping rate is determined by the 
external parameter D. This is how the diffusion-limited forward reaction 
A + A --* A + B is realized. 

Each A particle can also react with any one of the B particles to 
produce another A particle at one of its nearest-neighbor sites. This is the 
reaction-limited backward reaction A + A +-- A + B. The probability of the 
backward reaction is proportional to the concentration of B particles, with 
the constant of proportionality ~ being the external parameter controlling 
the reaction rate. The B particles are assumed to be well-mixed in the 
system at all times, which means that in the simulations one need only 
keep track of their number, and not their specific positions. 

All of the analytic work in the two preceding sections concerns the 
continuum limit of the lattice model. The simulation results are therefore 
expected to agree only when the concentration of A particles is low so 
that the lattice is sparsely occupied. In addition to this limitation, normal 
finite-system-size effects will cause deviations from the calculations (which 
assume an infinite system). 

Figure 1 shows the results of the d--  1 simulation runs. The concentra- 
tion of A particles was recorded as a function of time, and the long-time 
tail was fit to an exponential dependence e -~'. The value of 2 determined 
from the data has been plotted as a function of the initial concentration of 
A particles Co. The solid line in the same figure shows the theoretical 
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dependence of 2 on Co as calculated in Section 3. The ratio of 7/D was set 
to 10. Two equilibrium concentrations were used, as indicated by the two 
sets of symbols in the figure. Although the experimental data do not fall 
precisely along the theoretical curve, the behavior is quite suggestive that 
in the continuum limit the simulations will agree with the theory. The data 
from runs having a lower equilibrium concentration are noticeably closer 
to the theoretical curve than the data with a higher Ceq. The trend therefore 
would be for the data to move toward the theoretical curve as c,q is 
decreased so as to lessen the lattice effects. Data were not taken for lower 
values of C~q because of computational time constraints. 

In order to test the scaling result of Section 4, simulations were run in 
two and three dimensions with 7/D typically set to 1000. As in the case of 
the d =  1 simulations, the large-t dependence of the concentration of A 
particles as a function of time was fit to an exponential form e -~'. 

Figure 2 shows the dependence of 2 as a function of Co with Ceq held 
constant for d =  2. The data are plotted logarithmically on both scales in 
the anticipation of a power-law dependence. There are two regimes to the 
graph. For large c o, the values of 2 appear to be nearly constant, while for 
smaller co the data fall in a straight line with slope - 1/2. This value for the 
slope agrees with the theoretical one obtained from Eq. (23). 

The dependence of 2 on the C~q for a constant value of c o is tested in 
Fig. 3 for d =  2. Although there is some curvature in the data for large Ceq, 
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a linear fit to the double-logarithmic plot in the 1OW-Ceq range gives a slope 
quite close to the expected value from Eq. (23) of + 1/2. 

Figures 4 and 5 show the data for simulations in three dimensions. 
The dependence of 2 as a function of c o with Ceq held constant as shown 
in Fig. 4 is close to the theoretical prediction of 1/3 from Eq. (23). Figure 5 
gives the dependence of 2 on Ceq for fixed Co and seems to be constant. This 
is also corroborated by Eq. (23). 

6. C O N C L U D I N G  R E M A R K S  

The existence of a cluster-memory mechanism in the model 
A + A ~ A + B  has been demonstrated for d = l ,  2, and 3. For  the 
appropriate range of co/C~q the system surprisingly exhibits nonequilibrium 
behavior in that it always remembers its initial concentration for finite t. 
More precisely, the smallest mode which determines the asymptotic decay 
of the system to equilibrium depends upon the initial concentration. 
Although the cluster-memory mechanism holds, it is not clear whether the 
phase transition in the dynamics exists in higher dimensions. The transition 
to the cluster-driven dynamics may not be sharp as it is in  d =  1. 

The scaling argument for d > 1 seems to be general enough to give the 
correct behavior as d--+ ~ .  The geometrical nature of the phenomenologi- 
cal assumptions suggests that an upper critical dimension does not exist. 
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The assumptions, however, do not hold in d = 1. Although there is a cluster 
memory in all dimensions, the details of its mechanism differ between d = 1 
and d > 1. The models A + A ~ A + B and A + A ,-~ A exhibit identical 
asymptotic behavior in d =  1, but not for higher dimensions. 

The Monte Carlo data have been taken only when 7/D is large. An 
open question remains concerning the behavior of the system at small and 
intermediate values of 7/D. It may be interesting to investigate the complete 
phase diagram for this model, which may be somewhat richer than the 
results of the present work. 
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